Dairy Facilities and Cow Comfort for the Next Decade

John F. Smith, Joe Harner, Kevin Dhuyvetter & Mike Brouk

Kansas State University, Manhattan, KS

Factors that Determine Decisions Concerning Dairy Facilities

- The two big factors
 - Economics
 - Dairy industry trends
 - Investment per cow
 - Milk production per cow
 - Cattle performance
 - Milk production
 - Reproduction
 - Health

Summary of U.S. Dairy Industry

- Fewer dairies
- Larger dairies
- Cow numbers are flat
- More milk
- Higher milk production per cow
- Industry is moving west
- Consolidation
- Structural change

Dairy Enterprise – 2,400 Lactating Cows – Freestall¹

Production	Investment per cow*						
level (lbs/cow)	\$3,000	\$3,500	\$4,000	\$4,500	\$5,000		
22,000	9.2%	7.5%	6.1%	4.9%	3.8%		
23,000	11.3%	9.5%	7.9%	6.6%	5.4%		
24,000	13.5%	11.4%	9.7%	8.2%	7.0%		
25,000	15.6%	13.4%	11.5%	9.9%	8.5%		
26,000	17.7%	15.3%	13.3%	11.6%	10.1%		

¹ Based on K-State Dairy Budget MF-2442

Cow Comfort & Behavior

- Under U.S. conditions we improve cow comfort or take advantage of behavior when it improves performance
 - Milk production
 - Reproduction
 - Health

Improving Cow Comfort

- How you intervene is crucial
 - Order of steps to improve cow comfort
 - Rubber vs. managing heat stress

Cow Comfort & Behavior

- Time budgets
- Core body temperature
- Number of group changes

Time Budgets for Dairy Cows Milked 3X^C with Different Travel Times

	Recommended ^A	20 min. ^B	30 min. ^B	40 min. ^B
Milking Parlor	1.2 - 3.2	3.0	3.5	4.0
Feeding	5.3	5.3	5.3	5.3
Water	0.5	0.5	0.5	0.5
Socialization & Standing	3.0	3.0	3.0	3.0
Resting	12 – 14	12.2	11.7	11.2

^ARick Grant, Miner Institute ^BTravel time to and from the parlor ^CTime required to milk a group of cows is 40 minutes

Factors Influencing Time Budgets

- Grouping strategies
 - Group size
- Travel time to and from the parlor
 - Travel lane width
 - Distance from the parlor
- Stocking density
 - May not be enough time for individual cows to meet feeding and resting requirement

Number of Group Changes

Group changes in the transition period appear to be detrimental

Move cows to maternity at the time of calving

Core Body Temperature (CBT)

- Heat stress
 - Is a problem all year
- Heat stress audits
 - Cows experience big swings in CBT
 - Occurs on many dairies that believe they are managing heat stress
 - May be why we do not obtain the health and reproductive performance we desire

Effects of Heat Stress Short Term

Respiration Rate Rectal Temperature Water Intake Sweating Rate of Feed Passage
Dry Matter Intake
Blood Flow to Internal Organs
Milk Production

Effects of Heat Stress Long Term

- Future milk production?
 - Lower peaks
- Poor reproductive performance
- Health
 - Udder health
 - Lameness

Total dry matter intake¹ and pounds of dry matter required for maintenance with increasing environmental temperature (dew point = 30)

¹ Holter, West, and McGilliard. 1997. Journal of Dairy Science 80:2188.

Peak Milk Production by Lactation and Month of Calving, 1997

In a commercial dairy we never want to let a cow get hot!

- Cows start to get hot at 70° F
- We need to cool cows before they get hot!

Three Ways to Cool Cows

- Cool the cow
 - Primary method in naturally ventilated barns
- Cool the air
- Cool the cow and the air
 - Combination systems

Cooling the Cow

- Soak the cow and dry the cow
- Maximize the number of wet/dry cycles
- Combinations of soakers and fans
- Soak the cow until the skin is wet
- Evaporate the water off the skin
- Primary method in naturally ventilated facilities
- Water usage?

Locations

- Holding pens
- Exit lanes
- Feedlines

Cooling the Air

• Provide a cooler environment for the cow

Systems that Cool the Air

- Korral Kool
- Fans and high pressure misters
- Tunnel ventilation with evaporative pads
- High pressure misters on feedlines

Cooling the Air

 High Humidity Limits Our Ability to Take Advantage of Using Evaporative Cooling to Cool the Air Potential Temperature Change at 90° F Due to Water Evaporation in a Low Relative Humidity Environment

Potential Temperature Change at 90° F Due to Water Evaporation in a High Relative Humidity Environment

Tunnel or Cross Ventilation with Evaporative Pads

• 100% Tunnel or cross ventilation

- 24 hrs a day, 7 days a week, 365 days a year

Fully Tunnel Ventilated Freestall Barn, Western Kansas

Average Temperature of Evaporative Cooled and Tunnel Ventilated Four Row Freestalls Located in Western Kansas July and August of 2003

Average Relative Humidity of Evaporative Cooled and Tunnel Ventilated Four Row Freestalls Located in Western Kansas July and August of 2003

Average THI of Evaporative Cooled and Tunnel Ventilated Four Row Freestalls Located in Western Kansas July and August of 2003

Effect of Cow Cooling on Respiration Rate

Fully Tunnel Ventilated with Evaporative Pads Located in Northern Indiana

Average Temperature of Evaporative Cooled and Tunnel Ventilated Four Row Freestalls Located in Indiana July and August of 2003

Average Relative Humidity of Evaporative Cooled and Tunnel Ventilated Four Row Freestalls Located in Indiana July and August of 2003

Average THI of Evaporative Cooled and Tunnel Ventilated Tunnel Ventilated Four Row Freestalls Located in Indiana July and August of 2003

Eight Row Cross Ventilated Low Profile Freestall Facilities

John F. Smith and Joe Harner Kansas State University

Barn Specifics

- Located in SE North Dakota
- 210 ft wide and 420 ft long
- Sand bedding
- Crossbred cows
- Tail to tail stalls
- Crossovers
 - 20 feet
 - 2 waterers
- 5 ft perimeter walkway

Barn Specifics, Cont.

- Eave height
 - 11 ft 6 in
- Roof slope
 - .5 in 12
- Baffles
 - Located on front of stalls next to the feedlines
 - Metal
 - Parallel to the feedlines
 - 8 ft above alley
 - 6 ft 6 in above beds

Barn Specifics, Cont.

- Evaporative pads
 - Two 5 ft pads
 - Six inches thick
- Fans
 - Fifty one inch fans every 6 feet
 - Thirty inch minimum ventilation fans
- R-12 Insulation
 - Ceiling and sidewalls
- Florescent lighting
 - Two rows per pen
 - White baffles

Source: Joe Harner, K-State

Source: Joe Harner, K-State

Advantages of Cross Ventilation with Evaporative Pads

- Reduces the distance you have to pull air (as compared to tunnel)
 - Increase number of air exchanges per minute
 - Fresher air
 - More consistent temperatures
- Air can be baffled to the cow level
- May be able to put the dairy under one roof
 - Permitting
 - 25 year storm event
 - Controlling runoff
 - Emissions
- Consistent Environment
 - Summer and winter
- Cost less to construct then naturally ventilated barns
- Water usage of evaporative pads may be less as compared to soakers?

Advantages of Cross Ventilation with Evaporative Pads

- Reduces runoff to the lagoon
- Flexibility to cool the cow, air or both
- Lower electrical cost (as compared to fans and soakers)
- Fans are easy to service
- Site selection
 - Smaller foot print
 - Orientation is not an issue
 - Earth moving cost may be reduced
- Fly control
- Starling control
- Walking distance to parlor
 - Reduces time away from feed and water
- Ability to control lighting
- Air quality can be improved

Disadvantages of Cross Ventilation with Evaporative Pads

- Cost as compared to dry-lots
- Tied to mechanical ventilation
 - 24 hrs/day, 7 days/week, 365 days/year
- Airborne diseases?
- Need for generators is increased

Dairy Facilities of the Future

- Must provide an environment that cows can maintain normal CBT
- Time budgets will be essential
 - Cows must have adequate time to rest, eat, etc.

Ammonia Emission Rate in an Eight Row Cross Ventilated Barn

^{a,b,c} P<.0001 Source: Ron Sheffield, Univ. of ID

Summary

• Dairy facilities in the future will need to provide a consistent environment

– Maintain normal CBT

- Time budgets are essential
- Cross ventilated low profile freestall facilities allow us to manage CBT and time budgets

Thank You!

Comparison of Fan Electrical Cost for Naturally Ventilated and Cross Ventilated Freestall Barns

	# of Fans	HP	Fan Size (in)	# of Cows	Annual Electrical Costs ³	Annual Electrical Cost/Cow ³
Natural Ventilation (4-Row) ¹	140	.75	36	756	\$19,845	\$26.25
Cross Ventilation (8-row) ²	70	1	51	756	\$16,097	\$21.26
Cross Ventilation (16-row) ²	70	1	51	1512	\$16,097	\$10.65

¹2 Rows of fans/ pen, Fan usage of 150 days/ 24 hrs/ day

² Average 50% of fans running

³ \$0.07 KW and .75 KW per HP per hour

